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Figure 2. Perspective drawing (adapted from an ORTEP plot) of the Mo-
FejC(CO) i72_ anion as observed in single crystals of its ^2Hs) 4 N + salt. 
Metal atoms are represented by large-sized open circles; carbon and 
oxygen atoms are represented by small open circles. The anion contains 
15 terminally bonded and 2 unsymmetrically bridging carbonyl ligands. 
The four equatorial iron atoms (1 -4) are coplanar to within 0.008 A and 
the carbide carbon atom (labeled with a C) is displaced by 0.10 A from 
their least-squares mean plane toward the axial molybdenum atoms. 
Metal-carbide distances are of three types: Mo-C, 2.117 (6); axial Fe5-C, 
1.947 (6); and equatorial Fe-C, 1.894 (7, 9, 17, 4) A.16 Average bond 
lengths of interest follow: Fe-C(terminal carbonyl), 1.757(8, 12,35, 12);16 

Mo-C(terminal CO), 1.932 (8, 6,9, 3); Fe'-C(bridging CO), 1.882 (8); 
Fe4-C(bridging CO), 2.050 (7); Fe2-C(bridging CO), 1.841 (8); Mo-
C(bridging CO), 2.413 (8); C-O, 1.155 (9, 5, 15, 17); Mo-Fe, 2.915 (2, 
54, 107, 4); Fe5-Fe, 2.643 (2, 11, 21,4); equatorial Fe-Fe, 2.673 (2, 61, 
92, 4) A; Average angles: M-C-O(terminal), 174 (1, 4, 13, 15); M-C-
O(bridging), 139(1,8, 10,4)°. 

for preparing carbide clusters with many different metal atoms. 
The chemical and structural features of these new clusters are 
under investigation. 
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Photogeneration of Intermediates Involved in 
Catalytic Cycles. /3-Hydride Elimination from the 
16-Electron Alkyl Species Generated by Irradiation 
of Tricarbonyl(?75-cyclopentadienylX«-pentyl)tungsten(II) 

Sir: 

Study of many of the intermediates in catalytic cycles is 
often difficult owing ,to the fact that the rate-limiting step 
precedes the chemistry of the intermediate under consider­
ation. Optical irradiation of thermally inert precursors to 
certain intermediates may allow study of reactive species, if 
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Table I. Infrared Band Maxima for Relevant Complexes" 

complex 

(775-C5H5)W(CO)3(«-pentyl) 
(7;5-C5H5)W(CO)2(l-pentene)H* 
(7?5-C5H5)W(CO)2(l-pentene)H<' 
(7)5-C5H5)W(CO)2(PPh3)(«-pentyl) 
(775-C5H5)W(CO)3H' 
(775-C5H5)W(CO)3CH3 ' 
(7,5-C5H5)W(CO)2(PPh3)CH3 

(7)5-C5H5)W(CO)2(«-pentyl) 
(T)S-C5H5)W(CO)2CH3 

[(7^C5H5)W(CO)3J2 

solvent; T, ° 

isooctane; 25 
isooctane; 25 
1-pentene; 25 
isooctane; 25 
isooctane; 25 
isooctane; 25 
isooctane; 25 
paraffin matrix; 
paraffin matrix; 
isooctane; 25 

C 

- 1 8 9 
- 2 3 3 

!̂ CO, cm ' (f, M 

2016(6800) 
1973(1.0) 
1972(1.0) 
1932(1.0) 
2026(1.0) 
2021(6200) 
1936(1.0) 
1948(1.0) 
1955(1.0) 
1960(9800) 

1 cm ' o r rel abs) 

1926(11 000) 
1900(1.9) 
1898(1.9) 
1858(2-1) 
1936(2.2) 
1932(13 600) 
1861 (1.2) 
1862(1.0) 
1865(1.0) 
1912(7700) 

" Data were recorded using a Perkin-Elmer Model 180 infrared spectrometer. 6 From irradiation of (7j5-C5H5)W(CO)3(n-pentyl) at 25 
°C. c From irradiation of (T ; 5 -C 5 H 5 )W(C0) 3 H in the presence of 1-pentene at 25 0C. d These compounds were prepared by the method outlined 
in Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104. 

the photoreaction can be carried out at temperatures low 
enough that the intermediate is thermally inert. We report our 
preliminary findings concerning such a system in connection 
with /3-hydride elimination from coordinatively unsaturated 
metal alkyls. The possibility of /3-hydride elimination is an 
important consideration in whether metal alkyls can be isolated 
in the first place.1 /3-Hydride elimination is also of possible 
consequence in catalytic hydrogenation, hydrosilation, isom-
erization, metathesis, hydroformylation, and oligomerization 
of olefins as well as in the hydrogenolysis and other heteroge­
neous catalytic reactions of hydrocarbons. 

Irradiation (355 nm ± 20 nm; 1.6 X 1O-6 einstein/min) of 
the thermally inert (7i5-C5H5)W(CO)3(«-pentyl)2 in degassed 
isooctane solution at 25 0 C results in disappearance of the 
starting material with a 366-nm quantum yield of 0.58 ± 0.05. 
Following the photoreaction by IR spectroscopy in the CO 
stretching region reveals the initial growth of absorptions at 
1973 and 1900 cm - 1 (Figure 1) as absorptions for the starting 
material decline. Secondary photoproducts are observed that 
are assigned as (715-CsHs)W(CO)3H and (r/5-
C5Hs)2W2(CO)6 by IR, 1H NMR, and UV-visible spectros­
copy; see Table I. To minimize the importance of the secondary 
photoproducts, we have flash photolyzed ~ 1 0 - 3 M, degassed 
3.0-mL isooctane solutions of (775-C5Hs)W(CO)3(rt-pentyl). 
We have used a 2000-J, ~50-jUS xenon flash through Pyrex 
glass to yield up to 90% disappearance in a single flash with 
nearly exclusive formation of the product characterized by the 
1973- and 1900-cm_1 absorptions. The photoproduct is 
somewhat air sensitive but is relatively coordinatively inert at 
25 0 C, and isooctane solutions can be evaporated at 25 °C to 
dryness without decomposition. The solid can then be dissolved 
in C6D6 or C6D5CD3 for 1H NMR spectra. The 1H NMR 
spectra show a resonance at 8 —5.9 consistent with a metal 
hydride and a complex signal at 8 4.5-5.0 consistent with the 
vinyl protons of a coordinated alkene. The species reacts with 
CCl4 at 25 0 C to form HCCl3 as does (775-C5H5)W(CO)3H. 
Thus, we identify the photoproduct as (775-CsH5)W(CO)2-
(pentene)(H). The same product results from irradiation of 
(775-CsHs)W(CO)3H in the presence of 1-pentene (Table I), 
consistent with the fact that the principal result of irradiating 
(775-CsH5)W(CO)3H is CO substitution.33 Prolonged irra­
diation of (775-CsHsW(CO)3(«-pentyl) results in the formation 
of 1-pentene (and small amounts of the 2-pentenes) and n-
pentane, consistent with the secondary photoproducts (rj5-
C5H5)W(CO)3H and (775-C5Hs)2W2(CO)6. The lack of sig­
nificant quantity of the 2-pentenes and the formation of the 
same product from photosubstitution of CO by 1-pentene in 
(775-C5H5)W(CO)3H lead us to conclude that the IR absorp­
tions at 1973 and 1900 cm - 1 are associated with (T7 5 -C 5 H 5 ) -
W(CO) 2( l -pentene)(H) from irradiating (775-C5H5) 
W(CO)3(«-pentyl). 

For species similar to (r75-C5Hs)W(CO)2(l-pentene)(H), 

the relative intensity of the two infrared bands has been used 
to determine the O C - W - C O angle.1 Using the relative in­
tensities we determine the OC-W-CO angle to be ~ 108°. This 
angle suggests that the alkene-hydride product is principally 
the trans isomer, though the cis isomer is possibly formed first. 
Further structural proof is currently being pursued. 

Irradiation of (r/5-C5Hs)W(CO)3(n-pentyl) in degassed 
toluene solution of 0.5 M PPh3 results in the growth of IR 
absorption at 1936 and 1845 cm - 1 (Figure 1); these bands are 
similar in position and relative intensity to those resulting from 
irradiation of (775-C5Hs)W(CO)3CH3 under the same condi­
tions.4 The product is not (775-C5H5)W(CO)2(PPh3)(H), since 
the IR spectrum is not that found for this hydride.3b We con­
clude that the product is that resulting from CO photosubsti­
tution by PPh3, (7)5-C5H5)W(CO)2(PPh3)(«-pentyl). Reaction 
of (7)5-CsH5)W(CO)2(l-pentene)(H) with PPh3 at 25 0 C does 
occur5 to yield the same species, but the rate is too slow to be 
the mechanism for the photosubstitution of CO by PPh3 at 0.5 
M PPh3. These results suggest that CO ejection in the primary 
chemical result of exciting (775-C5H5) W(CO)3(«-pentyl) just 
as has been suggested for other (775-C5H5)M(CO)3R com­
pounds (M = Mo, W; R = Cl, Br, I, -CH 3 , - H , 
-CH2C6H5).3-4-6 

Low-temperature irradiation of (775-CsH5)W(CO)3(H-
pentyl) in hydrocarbon matrices provides direct evidence for 
the steps7 

(775-CsH5)W(CO)3(«-pentyl) 

->. (775-C5H5) W(CO)2(«-pentyl) + CO (1) 

(7)5-C5H5)W(CO)2(n-pentyl) 

+ CO - i (T)5-C 5 H 5 ) W(CO)3(n-pentyl) (2) 

(7;5-C5H5)W(CO)2(/j-pentyl) + PPh3 

- t (7,5-C5H5) W(CO)2(PPh3)(«-pentyl) (3) 

(775-C5H5)W(CO)2(/j-pentyl) 

Jt(775-C5H5)W(CO)2(l-pentene)(H) (4) 

The irradiation of (775-C5H5)W(CO)3R (R = -CH 3 , -n-
pentyl) at 77 K in a hydrocarbon matrix (toluene or hexane) 
containing PPh3 followed by warmup to 298 K results in for­
mation of (r/5-CsH5)W(CO)2(PPh3)(R). Monitoring the IR 
spectral changes accompanying irradiation of (775-C5H5)-
W(CO)3R at 77 K in a paraffin matrix reveals the growth of 
two absorptions at nearly the same position and relative in­
tensity for R = CH3 and H-pentyl (Figures 1 and 2). Accom­
panying the IR spectral changes are large visible spectral 
changes; the matrix turns from nearly colorless or pale yellow 
to blue. The two IR absorptions and the blue color are attrib-
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Figure 1. Infrared spectral changes accompanying irradiation of (TJ5-
C5H5)W(CO)3(/?-pentyl). (a) Trace O shows ~2 X 10~3 M (^-C5H5)-
W(COb(n-pentyl) in a paraffin matrix at -189 0C before irradiation. 
Trace 1 is'obtained after 5-min irradiation and shows formation of (TJ5-
C5H5)W(CO)2(/j-pentyl). Trace 2 is obtained after warming to 25 0C 
showing formation of (?;5-C5H5)W(CO)2(l-pentene)H. (b) Trace O shows 
1.5 X ICT3 M (j75-C5H5)W(CO)3(«-pentyl) in degassed isooctane. Traces 

; 1 and 2 are after one and two flashes at 25 °C from a xenon flash lamp, 
respectively. Formation of (?;5-C5H5)W(CO)2(l-pentene)H is observed, 
(c) Trace O shows 1.5XlO-2M (T;5-C5H5) W(CO)3(n-pentyl) in degassed 
toluene containing 0.5 M PPh3. Traces 1, 2, and 3 are after 15-, 35-, and 
65-s irradiation, respectively. The observed product is (?j5-C5H5)-
W(CO)2(PPh3)(«-pentyl). 

uted to the 16 e~ (775-C5H5)W(CO)2R. Warmup in the par­
affin matrix leads to nearly complete regeneration of (r/5-
C5H5)W(CO)3R for R = -CH3 presumably via a recombi­
nation process as shown in eq 2, but for R = -M-pentyl regen­
eration of (T? 5 -C 5 H 5 )W(CO) 3 R is only partial; there is sig­
nificant conversion into the species (7j5-C5H5)W(CO)2(l-
pentene)(H) on the basis of the IR peaks that grow in upon 
warmup (Figure 1). Thus, we can spectroscopically monitor 
the /3-hydride transfer from the 16 e_ alkyl species (eq 4). This 
process appears to occur at temperatures as low at —100 °C; 
the rate constant at this temperature is ~5 X 1O-4 s -1. 

In summary, irradiation of (775-C5H5)W(CO)3(«-pentyl) 
results in loss of CO as a primary photoprocess followed by 

2 0 0 0 1950 1900 1850 

-* cm" 

Figure 2. Infrared spectral changes accompanying irradiation of (T?5-
C5H5)W(CO)3CH3. (a) Trace 0 shows ~8 X 10~3 M (r/5-C5H5)-
W(CO)3CH3 in a paraffin matrix at -233 0C before irradiation. Trace 
1 is obtained after 28-min irradiation and shows formation of (TJ5-
C5H5)W(CO)2CH3. (b) Trace 0 shows 8.0 X 10"4 M (T) 5 -C 5 H 5 ) -
W(CO)3CH3 in degassed isooctane containing 0.1 M PPh3 before irra­
diation. Traces 1 and 2 are after 15- and 60-min irradiation, respectively, 
at —196 °C followed by warming to 25 0C. The observed product is 
(T^-C5H5)W(CO)2(PPh3)CH3. (c) Trace O shows 8.0 X 10"4 M (TJ5-
C5H5)W(CO)3CH3 in degassed isooctane containing 0.1 M PPh3 before 
irradiation. Traces 1, 2, and 3 are after 1-, 3-, and 7-min irradiation, re­
spectively, at 25 0C. The observed product is (7/5-C5H5)W(CO)2(PPh3)-
CH3. 

/3-hydride transfer to yield an alkene-hydride complex. The 
photogenerated, coordinatively unsaturated metal alkyl in­
termediate has been observed at low temperatures. These re­
sults show that it will be possible to evaluate factors controlling 
the rate of p'-hydride transfer. 
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Heterodinuclear Di-^-sulfido Bridged 
Dimers Containing Iron and Molybdenum or Tungsten. 
Structures Of(Ph4P)2(FeMS9) Complexes (M = Mo, W) 

Sir: 

Molybdenum K-edge X-ray absorption fine structure 
(EXAFS) analyses have been reported for the MoFe protein 
components of the Clostridium pasteurianum' and Azoto-
bacter vinelandii2 (Az. v.) nitrogenases, and for the FeMo 
cofactor2 (FeMo-co) from Az. v.3 These studies have lead to 
the conclusion that the Mo coordination environments are very 
similar, and in all cases the Mo is coordinated by three or four 
S atoms at 2.3 A and is at close proximity (<3 A) to two or 
three Fe atoms. 

A partial adherence to the above coordination requirements 
for the Mo atom is found in the structures of the "double cu-
bane" cluster complexes [Mo2Fe6S9(SEt)8]3- 4 and [Mo2-
Fe6S8(SR)9]3" (R - Et;4 R = Ph;5 R = SCH2CH2OH6). The 
EXAFS spectra of the Mo centers in the ethyl derivatives of 
these clusters are very similar to those obtained for the nitro-
genase systems.4 Because of basic differences in the Mo:Fe:S 
atom ratios between the FeMo proteins, the FeMo-co, and the 
"double cubanes", the latter cannot be considered complete 
analogues. However, it seems likely that Mo-containing 
fragments in the "double cubanes" may be identical with 
fragments in FeMo-co and the nitrogenases.4 

In our approach to the construction of Mo-Fe-S clusters 
in appropriate Mo: Fe ratios we have initiated synthetic efforts 
toward the isolation of molecular "building blocks" that con­
tain Fe, S, and Mo, which eventually may be used in the syn­
thesis of clusters of higher complexity. In a recent publication 
we reported7 on the synthesis and structural characterization 
of one such molecule, (Et4N)2KPhS)2FeS2MoS2]2- (I) 
(Figure 1). In this communication we report on the tungsten 
analogue of this complex, [(PhS)2FeS2WS2]2- (II), and the 
reactions of I and II with trisulfides. The complex II was ob­
tained by the reaction of [WS4]2- with an equimolar amount 
of [Fe(SPh)4]2- 8 in dimethylformamide (DMF) and isolated, 
in near-quantitative yields, as red crystals of the Ph4P+ or 
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Figure 1. 

Et4N+ salts, upon addition of diethyl ether to the DMF solu­
tions. Anal. Calcd for WFeS6C60H50P2: C, 56.96; H, 3.98; S, 
15.2; Fe, 4.41. Found: C, 56.92; H, 4.01; S, 15.09; Fe, 4.40. The 
visible spectrum (DMF) of this paramagnetic compound (jugp 
= 4.73 /UB at 298 K) is characterized by absorptions at 540 nm 
(sh), 466 (sh), 432 (e 6890), 409 (11 300), and 375 (8310). 
Single-crystal diffraction patterns of the Et4N+ salt of II are 
very similar to those of I and show that the two complexes are 
isomorphous and very likely isostructural. An S = 2 ground 
state is suggested by the magnetic moment of II, and the simple 
Curie-Weiss magnetic behavior, evident in the temperature 
dependence of the isotropically shifted proton resonances,9 

rules out the population of higher spin states at a temperature 
as high as 352 K. The 57Fe Mossbauer spectrum of II at 4.2 K 
shows a single doublet with a quadrupole splitting (QS) of 2.24 
(1) mm/s and an isomer shift (IS) of 0.48 (1) mm/s (relative 
to Fe metal at 298 K). These values are similar to those ob­
tained for I at 4.2 K (QS, 1.96 (1); IS, 0.45 mm/s) and suggest 
that the electronic environment of the Fe atom is rather in­
sensitive to a change from Mo to W in the heterodinuclear 
dimers. By Mossbauer, isomer shift criteria established for the 
iron-sulfur proteins and their synthetic analogues, a value of 
+0.45 mm/s is intermediate between those observed for 
high-spin Fe(II) and Fe(III) in tetrahedral sulfur environ­
ments.10 

The reactions of the Ph4P+ salts of either I or II with 10 
equiv of RSSSR (R = C7H7) in warm DMF proceed readily. 
Upon cooling and dilution with absolute ether, these DMF 
solutions deposit X-ray isomorphous crystals of the 
(Ph4P)2[(S5)FeS2MS2] salts as the hemi-DMF solvates (M 
= Mo, dark brown crystals, 86% yield; M = W, dark red 
crystals, 79% yield). Anal. Calcd for FeMoS9C48H40P2-
V2(C3H7ON) (III): C, 51.44; H, 3.80; N, 0.61; P, 5.36; S, 
24.97; Mo, 8.30. Found: C, 50.62; H, 3.84; N, 0.64; P, 5.22; 
S, 24.23; Mo, 8.43. Anal. Calcd for FeWS9C48H40P2-
V2(C3H7ON) (IV): C, 47.56; H, 3.54; N, 0.56; S, 23.32; Fe, 
4.51. Found: C, 46.75; H, 3.25; N, 0.41; S, 21.9. Electronic 
spectra for IV: 550 nm (e 1250), 464 (sh), 425 (7480), 398 
(7830), 366 (9390). The magnetic moments (ntW) of III and 
IV, 4.90 and 4.90 jiB at 298 K, respectively, again indicate S 
= 2 ground states for these complexes. The Mossbauer spec­
trum of IV (in liquid N2) consists of a single doublet and shows 
a quadrupole splitting of 1.66 (1) mm/s and an isomer shift 
of 0.51 (l)mm/s. 

Single crystal, X-ray diffraction, intensity data on III and 
IV were collected on a Picker-Nuclear FACS-I automatic 
diffractometer using a B-28 scan technique.11 The data cor­
rected for Lorentz, polarization, and absorption effects were 
used for the solution of the structures by conventional Patterson 
and Fourier techniques. Refinement by full-matrix least-
squares methods has progressed to conventional R = 9.5% for 
III and 8.5% for IV using isotropic thermal parameters for the 
carbon atoms and the DMF-solvate molecule and anisotropic 
thermal parameters for all other atoms. The hydrogen atoms 
have not been included in the refinement process as yet. The 
structures of the anions (Figure 2) show the tetrahedrally 
coordinated Fe atoms bound by S5

2 - bidentate chelates and 
by the MS4

2- (M = Mo, W) units which also serve as biden­
tate chelates. The S5

2 - anion, although not a common ligand, 
occurs as a bidentate chelate in [Fe2Si2]2-,12 (PtSi5)2-,13 and 
Ti(Cp)2S5.

14 In the structures of [Fe2Si2]2" and (PtS,5)2-, 
the MS5 "ring" units are found in the chair conformation 
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